

Structural revision of halipeptins: synthesis of the thiazoline unit and isolation of halipeptin C

Carmela Della Monica,^c Antonio Randazzo,^b Giuseppe Bifulco,^a Paola Cimino,^a Maurizio Aquino,^c Irene Izzo,^c Francesco De Riccardis^{c,*} and Luigi Gomez-Paloma^{a,*}

^aDipartimento di Scienze Farmaceutiche, Università di Salerno, via Ponte Don Melillo, 84084 Fisciano (SA), Italy

^bDipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy

°Dipartimento di Chimica, Università di Salerno, Via S. Allende, 84081 Baronissi (SA), Italy

Received 30 May 2002; revised 20 June 2002; accepted 25 June 2002

Abstract—The structural revision of the anti-inflammatory marine metabolites halipeptin A (1) and B (2) along with the isolation of the new related product halipeptin C (3) are reported. In particular, the heterocyclic portion of the molecule, incorrectly assigned as an oxazetidine ring, has now been characterised as a thiazoline unit by comparison of the spectral data of the natural products (1–3) with an appropriate synthetic model (10). GIAO calculated ¹³C NMR chemical shifts for oxazetidine and thiazoline model compounds provide additional support to the revised structure. © 2002 Elsevier Science Ltd. All rights reserved.

Halipeptins A (1) and B (2) are cyclic depsipeptides displaying a potent in vivo anti-inflammatory activity (60% of carrageenan induced edema reduction at a intraperitoneal dose of 0.3 mg/Kg in mice).¹ Their structures feature the presence of common coded amino acid residues (2×L-Ala) along with unusual units, such as the polysubstituted decanoic acid HTMMD, *N*methyl- δ -hydroxyisoleucine (NMe- δ OH-Ile) and the heterocyclic version of an α,α -disubstituted amino acid which was incorrectly identified as a methyloxazetidine– carboxylic acid residue (OMCA) mainly on the basis of NMR and HRFABMS data.

The opportunity of re-examine the spectral data of halipeptins came with the isolation, from the same Vanuatu species of *Haliclona*, of a new minor related compound, named halipeptin C (3). Although all the NMR data (see Table 1 and HMBC correlations of 3) could be readily interpreted assuming that halipeptin C was a derivative of 2 bearing a L-NMeVal in place of the NMe- δ OH-Ile residue, HRESIMS data suggested that its molecular formula contained an unexpected sulphur atom. Indeed, the pseudomolecular ion peak of 3 at m/z 605.3360 (M+Na⁺, 605.33487 calculated for C₂₉H₅₀N₄NaO₆S versus 605.35263 calculated for C₂₉H₅₀N₄NaO₈) clearly favoured the molecular formula containing a sulphur in place of two oxygen atoms.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01209-1

^{*} Corresponding authors. Tel.: +39-089-962811; fax: +39-089-962828 (L.G.P.); Tel.: +39-089-965230; fax: +39-089-965296; e-mail: dericca@unisa.it; gomez@unisa.it

Table 1. 1 H, 13 C and 15 N NMR data of of halipeptin C (3) (CDCl₃, 500 MHz)

Residue	$\delta_{\mathrm{H}}{}^{\mathrm{a}}$, mult., J in Hz	$\delta_{\rm C}{}^{\rm a}$	¹ H– ¹³ C HMBC
Ala1			
CO		169.6	
α	4.71, quintet, 7.6	49.9	CO
β	1.41, d, 7.6	18.2	Cα, CO
IN	7.01, d, 7.6		CO-NMeval
NMeVal			
CO		169.9	
α	4.98	64.8	
β	2.56, m	26.4	
Me-1	0.93, d, 6.3	17.7	Сα, Сβ, Ме-2
Me-2	0.98, d, 6.3	21.0	Ca, C β , Me-1
NMe	2.81, s	30.5	Ca, CO-a-MeCys
α-MeCys			
CO		171.9	
α		83.6	
Me-a	1.49, s	23.0	Cα, Cβ, CO
β1	3.31, d, 12.0	43.6	
β2	4.15, d, 12.0		
Ν			
Ala2			
CN(S)		177.3	
α	4.82, quintet, 7.4	48.8	CO-HTMHD
β	1.50, d, 7.4	22.1	Cα, CO
N	7.23, d, 7.4		CO-HTMHD
нтмнр			
1		173.6	
2		45.6	
 Me'-2	1.12. s	25.9	Me"-2, C-1, C-2, C-3
Me"-2	1.20. s	21.9	Me'-2, C-1, C-2, C-3
3	4.71. d. 2.3	82.3	CO-Ala1
4	1.93. m	34.0	
Me-4	0.80. d. 6.5	14.1	C-3
5	1 30 m	32.0	00
0	1 34 m	02.0	
6	1.6., m 1.45. m	34 1	
0	1.10, m	51.1	
7	3.55 quintet 5.3	72.0	
8	1.30. m	39.8	
-	1.43. m	22.0	
9	1.33	17.5	
10	0.91, t, 6.0	14.9	C-8, C-9

^a Chemical shift values are referred to CHCl₃ ($\delta_{\rm H}$ =7.26) and ¹³CHCl₃ ($\delta_{\rm C}$ =77.0) as internal standards.

Careful HRESIMS measurements revealed that this was also the case for the parent compound halipeptin A, for which a pseudomolecular ion peak could be found at m/z 649.3628 (M+Na⁺, 649.3611 calculated for $C_{31}H_{54}N_4NaO_6S$ versus 649.3788 calculated for $C_{31}H_{54}N_4NaO_8$).[†] The new molecular formulas of the

halipeptin family indicated that the original assignment of the heterocycle portion as OMCA was incorrect.

A literature search led to the conclusion that ${}^{1}H$ and ${}^{13}C$ NMR data of 1, 2 and 3 were consistent with the presence of a methylthiazoline unit.²

In order to gather conclusive evidences for the structural revision of these molecules (see Table 2 for spectral data) we synthesised a model thiazoline unit (Schemes 1 and 2). The synthesis of Δ^2 -thiazoline fragment was based on a four steps preparation of (*R*)-2methylcysteine hydrochloride (4), reported by Pattenden and co-workers in 1993.³ Esterification of 4 with HCl/MeOH⁴ furnished a mixture the desired methyl ester 6 and the corresponding dimeric amino acid 5 in variable ratio (Scheme 1). Reduction⁵ of the disulphide bond with PPh₃ gave the expected (*R*)-2methylcysteine hydrochloride methyl ester (6) in 80% overall yield from 4.

Coupling³ of **6** with the 2-(*S*)-*t*-butoxycarbonylaminoproprionitrile (**9**), easily prepared in 74% yield from commercially available (L)-alaninamide hydrochloride (**7**) through *N*-Boc protection⁶ and efficient dihydration of the amide moiety⁷ (Scheme 2), yielded the desired 2-[1-(*S*)-*tert*-butoxycarbonylaminoethyl)]-4 - (R) - methyl - 4,5 - dihydrothiazole - 4 - carboxylic acid methyl ester **10**.[‡]

Final support to the revised structure came from the comparison of GIAO (gauge including atomic orbitals) calculated⁸ ¹³C and ¹⁵N NMR chemical shift of four model compounds, representing the two diastereomeric couples of oxazetidine (**11a** and **11b**) and thiazoline (**12a** and **12b**) units, respectively, with those of the natural product **1** (see Table 2), following an approach recently reported by our group.⁹

[‡] Physical data for compound **10**: $[\alpha]_{D} = -23$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 1.40 (1 H, d, J = 7.3 Hz, CHCH₃), 1.42 (9 H, s, (CH₃)₃), 1.50 (3 H, s, CH₃), 3.14 (1 H, d, J = 11.3 Hz, CHH), 3.75 (1 H, d, J = 11.3 Hz, CHH), 3.76 (3 H, s, OCH₃), 4.50 (1 H, m, CHCH₃), 5.23 (1 H, m, NH); ¹³C NMR (100 MHz, CDCl₃): δ 20.43 (CHCH₃), 23.80 (CH₃), 28.30 (×3, (CH₃)₃), 41.63 (CH₂S), 49.18 (CH), 52.81 (OCH₃), 79.76 (OC(CH₃)₃), 84.20 (C(CH₃)CO₂Me), 154.86 (NCO₂), 173.53 and 174.55 (SC=N and CO₂Me); HRESIMS: m/z 303.1372 (303.1379 calculated for C₁₃H₂₃N₂O₄S).

^{\dagger} Actually, our first HRMS measurements on 1 gave pseudomolecular ion peaks that were more in agreement with the molecular formula C₃₁H₅₄N₄O₉ than with C₃₁H₅₄N₄O₇S, leading to a misinterpretation of its NMR data. However, new HRMS data on 1 and 3 were obtained on a superior instrumentation (API QSTAR Pulsar) capable of reaching a resolution of about 20000 in that particular mass range.

Table 2. Calculated and experimental ¹³C chemical shifts values (ppm) of natural and synthetic compounds

Residue	Calculated ¹³ C chemical shifts values	Residue	Calculated ¹³ C chemical shifts values	Experimental ¹³ C chemical shifts values	
	Oxazetidine unit		Thiazoline unit	Natural compound 1	Synthetic compound 10
	11a/11b		12a/12b		
Ala2		Ala2			
CO	182.2/180.4	SC=N	178.2/178.1	177.3	173.5
α	44.2/47.8	α	48.0/47.8	48.5	49.2
β	18.1/18.8	β	22.1/21.5	22.0	20.4
N	-247.1/-247.4	Ň	-109.4/-107.2	-89.3	-
OMCA		α-MeCys			
CO	168.4/170.6	CO	174.2/173.6	172.4	174.6
α	77.8/76.1	α	78.0/79.1	83.3	84.2
β	57.0/55.0	β	40.9/43.1	44.2	41.6
Me-α	23.0/22.0	Me-α	29.5/27.7	23.1	23.8

Scheme 1. *Reagents and conditions*: (a) 5.0 equiv. of SOCl₂, MeOH, reflux, 12 h, 80%; (b) 4.5 equiv. of PPh₃, DME/MeOH/H₂O, 7:2:1, 90°C, 12 h, 100%.

Notably, this set of data would *slightly* favour the *R* absolute configuration at C-4 of the thiazoline unit, a finding which is not surprising, considering that this configuration is expected from the cyclisation of a L- α -methylcystein amino acid residue and taking into account that all the amino acid residues of halipeptins appear to belong to the *L* series.

Extraction and isolation of 3 followed the same protocol used for 1 and $2^{1,\$}$ Structure elucidation of 3 was

Scheme 2. Reagents and conditions: (a) 1.5 equiv. of Boc_2O , 1.5 equiv. of Et_3N , MeOH, 12 h, 90%; (b) 2.2 equiv. of $(CF_3CO)_2O$, 4.4 equiv. of pyridine, THF, 0°C \rightarrow rt, 3 h, 82%; (c) 1.0 equiv. of **6**, 1.0 equiv. of **9**, 1.0 equiv. of Et_3N , MeOH, 65°C, 12 h, 30%.

straightforward due to the very limited differences existing between 2 and 3 (their ¹H NMR spectra were virtually superimposable, except for few signals). However, besides the opportunity to correct the assignment of the OMCA unit, the structural study of 3 was useful also for stereochemical reasons. In fact, HPLC Marfey analysis¹⁰ of the acidic hydrolysate of 3 allowed us to assign the *N*-MeVal residue to the *L* series, with the important implication that the same absolute configuration is very likely present in the NMe- δ OH-IIe of 1 and 2.

Acknowledgements

We thank Professor Shigeki Matsunaga (University of Tokyo, Japan) for helpful discussions on the structural revision of halipeptin A. Financial support was provided by the Università di Salerno, Consiglio Nazionale delle Ricerche (CNR, Roma) and Ministero dell Istruzione, dell'Università e della Ricerca Scientifica e Tecnologica (MIUR, Roma) through the PRIN 1999– 2001 and 2001–2003 programs.

References

- Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. J. Am. Chem. Soc. 2001, 123, 10870–10876.
- Carmeli, S.; Paik, S.; Moore, R. E.; Patterson, G. M. L.; Yoshida, W. Y. *Tetrahedron Lett.* **1993**, *34*, 6681–6684.
- 3. Mulqueen, G. C.; Pattenden, G.; Whiting, D. A. Tetrahedron 1993, 49, 5359–5364.

⁸ Halipeptin C (**3**), white amorphous solid, $[α]_D = -30$ (*c* 0.3, CHCl₃), was purified on a μ-Bondapack C-18 column (7.8×300 mm) with linear gradient elution, H₂O/CH₃OH, 75:25–0:100 in 30 min ($t_R =$ 20.5 min). HRESIMS: *m*/*z* 605.3360 (M+Na⁺, 605.33487 calculated for C₂₉H₅₀N₄NaO₆S). For NMR data, see Table 1.

- Ronald, G. W.; Malcolm, W. H.; Stammer, C. H. J. Org. Chem. 1969, 34, 576–580.
- 5. Corey, E. J.; Mehrotra, M. M. Tetrahedron Lett. 1988, 29, 57-60.
- Yuste, F.; Ortiz, B.; Carrasco, A.; Peralta, M.; Quintero, L.; Sanchez-Obregon, R.; Walls, F.; Garcia Ruano, J. L. *Tetrahedron: Asymmetry* 2000, *11*, 3079–3090.
- Kruijtzer, J. A. W.; Lefeber, D. J.; Liskamp, R. M. J. Tetrahedron Lett. 1997, 38, 5335–5338.
- 8. Ditchfield, R. Mol. Phys. 1974, 27, 789-807.
- Barone, G.; Gomez-Paloma, L.; Duca, D.; Silvestri, A.; Riccio, R.; Bifulco, G. Chem. Eur. J. 2000, 8, 3233–3239.
- 10. Marfey, P. Carlsberg Res. Commun. 1984, 49, 591–596.